Automated and Accurate Geometry Extraction and Shape Optimisation of 3D Topology Optimisation Results

London – 15th of October 2019

Femto Engineering – Marco Swierstra

Introduction – Topology optimisation

- Design requirements
 - Boundary conditions
 - Variables: material placement
 - Objective: maximum stiffness (minimum compliance)
 - Constraint: limit amount of material used

Introduction – Topology optimisation

Introduction – Post-processing

- Goals
 - Automatic
 - Accurate and optimised
 - 3D

Contents

- Structural design optimisation (2D)
 - Stage 1. Topology optimisation (TO)
 - Stage 2. Geometry extraction

femto **E** engineering

5

- Stage 3. Shape optimisation
- Case studies (3D)
- Performance
- Conclusions

Geometry extraction

AFEMS

femto E engineering

jagged boundaries intermediate densities

smooth

crisp

Delft University of Technology

6

image processing

Level Set Function (LSF)

• Radial Basis Function (RBF):

 $N_i(x) = e^{-R_i(x)^2} \cdot w_i$

• Sum RBFs to Level Set Function (LSF):

$$\phi(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} e^{-R_i(x)^2} \cdot w_i$$

femto **E** engineering

7

LSF to smooth density field (1)

LSF to smooth density field (2)

FEMS

Shape optimisation

- Not an optimised design anymore
- Image interpretation no mechanics

femto E engineering

- Variables: weights w_i of Radial Basis Functions
- Two tools: structural analysis and sensitivity analysis

11

Structural analysis

- Same mesh as topology optimisation
- *p*-FEM + quadtree integration = Finite Cell Method

Sensitivity analysis

• Gradient-based optimisation

Shape optimisation

14

Summary three-staged procedure

15

Performance – computation time (1)

- Post-processing takes more time on average
- Prototype Python implementation
- Similar quality using TO alone is less efficient

Case study	Grid size	Stage 1	Stage 2	Stage 3	Stage 2 + 3
2D MBB	64 x 32	20	1	22	53%
2D Cantilever	180 x 120	371	6	167	32%
3D MBB	64 x 10 x 32	1,203	53	3,108	72%
3D Cantilever	30 x 30 x 30	1,454	80	2,369	63%

18

Computation times (s) for the case studies.

Performance – accuracy

NAFEMS

femto E engineering

20

Conclusions

- Automatically smooth and optimised designs
- Almost no intermediate densities
- Computation times are high (or low?)

femto **E** engineering

- No remeshing, still sufficient analysis accuracy
- Easily extendable to other types of optimisation problems

21

Thank you very much!

femto **E** engineering

22

The Netherlands oude delft 137, 2611 be delft po box 2854, 2601 cw delft t: +31 15 285 05 80 f: +31 15 285 05 81 ms@femto.eu www.femto.eu

www.nafems.org

engineering innovation

